astrofns - 1

A series of astronom cal functions which may be
useful. These are all 'user defined functions'.

This means that you can paste theminto spreadsheets
just like the normal functions - see Insert|function
you can even use the function w zard.

The di sadvant age

of Excel's 'user defined functions' is that they

can only return a single value, and the function cannot alter
the properties of the worksheet. Argunents you pass to

the VBA functions you define are passed 'by val ue'

However, VBA defaults to 'passing argunents by reference’
when a function is called fromanother VBA function! This
can lead to a function giving a different answer when
called in the VBA nodul e conpared with when called in the
spreadsheet. Use the ByVal keyword to tag argunents you
change later in functions. See snoon() for an exanple.

define sone nunerical constants - these are not
accessi ble in the spreadsheet.

Public Const pi As Double = 3.14159265358979
Public Const tpi As Double = 6.28318530717958
Public Const degs As Double = 57.2957795130823
Public Const rads As Double = 1.74532925199433E- 02

' The trig formulas working in degrees. This just
' makes the spreadsheet formulas a bit easier to
' read. DegAtan2() has had the argunents swapped
' fromthe Excel order, so the order matches nost
' t ext books

Function DegSi n(x As Doubl e) As Doubl e

DegSin = Sin(rads * x)
End Function

Functi on DegCos(x As Doubl e) As Doubl e
DegCos = Cos(rads * x)
End Function

Function DegTan(x As Doubl e) As Doubl e
DegTan = Tan(rads * x)
End Function

Functi on DegArcsin(x As Double) As Double
DegArcsin = degs * Application. Asin(x)
End Function

Functi on DegArccos(x As Double) As Double
DegArccos = degs * Application. Acos(x)
End Function

Functi on DegArctan(x As Double) As Double
DegArctan = degs * Atn(x)
End Function

Function DegAtan2(y As Doubl e, x As Double) As Double
' this returns the angle in the range 0 to 360
instead of -180 to 180 - and swaps the argunents
This format matches Meeus and Duffett-Smith

DegAt an2 = degs * Application. Atan2(x, vy)

I f DegAtan2 < 0 Then DegAtan2 = DegAtan2 + 360
End Function

Private Function range2pi (x)

astrofns - 2
' returns an angle x in the range 0 to two pi rads
This function is not avail able in the spreadsheet

range2pi = x - tpi * Int(x / tpi)
End Function

Private Function range360(x)

returns an angle x in the range 0 to 360
used to prevent the huge val ues of degrees
that you get from nmean |ongitude formulas

' this function is private to this nodul e,

' you won't find it in the Function W zard,

' and you can't use it on a spreadsheet.

' If you want it on the spreadsheet, just renove
' the "private' keyword above

range360 = x - 360 * Int(x / 360)

End Function

Function degdeci mal (d, m s)

' converts fromdns fornmat to ddd format
degdecimal =d + m/ 60 + s / 3600

End Functi on

' cal ander functions. jday and jcentury work on the Julian day nunbers.
' day2000 and cent ury2000 work on the days to J2000 to reduce the
' nunber of significant figures needed

Function jday(year As Integer, nonth As Integer, day As Integer, hour As Integer
n1n As Integer, sec As Double, Optional greg) As Double
returns julian day nunber given date in gregorian cal ender (greg=1)
or julian calendar (greg = 0). If greg onmted, then Gegorian is assumned.
Dima As Double
Dimb As |nteger
a = 10000# * year + 100# * nonth + day
If (a < -47120101) Then MsgBox "Warning: date too early for algorithnt
If (IsMssing(greg)) Then greg =
If (month <= 2) Then

nonth = nonth + 12

year = year - 1
End If
| f (greg 0) Then

= -2 + Fix((year + 4716) / 4) - 1179

Else
b = Fix(year / 400) - Fix(year / 100) + Fix(year / 4)
End If
a = 365# * year + 1720996.5
jday = a + b + Fix(30.6001 * (month + 1)) + day + (hour + min/ 60 + sec / 3600) / 24
End Function

Functlon jcentury(jd As Doubl e) As Double

finds how many julian centuries since J2000 given
the julian day nunmber. Not used below, | just add
a line into the subroutines which then take days
bef ore J2000 as the time argunent

jcentury = (jd - 2451545) / 36525

End Function

Function day2000(year As Integer, nonth As Integer, day As Integer, hour As Integer
n1n As Integer, sec As Double, Optional greg) As Double

returns days before J2000.0 given date in gregorian cal ender (greg=1)

or julian calendar (greg = 0). If you don't provide a value for greg,

t hen assuned Gregorian cal ender

Dima As Double

astrofns - 3

Dimb As |nteger
If (IsMssing(greg)) Then greg =
a = 10000# * year + 100# * nmonth + day
If (month <= 2) Then
nonth = nonth + 12
year = year - 1
End If
If (greg = 0) Then
b =-2+ Fix((year + 4716) / 4) - 1179
El se
b = Fix(year / 400) - Fix(year / 100) + Fix(year / 4)
End If
a = 365# * year - 730548.5
day2000 = a + b + Fi x(30.6001 * (nonth + 1)) + day + (hour + min / 60 + sec / 3600) / 24
End Function

Functlon cent ur y2000(day2000 As Doubl e) As Doubl e
finds how many julian centuries since J2000 given
' t he days before J2000
century2000 = day2000 / 36525
End Function

Conversion to and fromrectangul ar and pol ar coordi nates.

X, Y,Z forma |left handed set of axes, and r is the radius vector
of the point fromthe origin. Theta is the el evati on angl e of

r with the XY plane, and phi is the angle anti-clockw se fromthe
X axis and the projection of r in the X Y pl ane.

i n astronom cal coordinate systens,

item equat ori al ecliptic (helio or geo centric)
z celestial pole ecliptic pole

X,y equatorial plane ecliptic

t het a declination latitude

phi ri ght ascension | ongi t ude

Function rectangul ar(r As Double, theta As Double, phi As Doubl e,

i ndex As Integer) As Double

t akes spherical coordinates in degrees and returns the rectangul ar
coordi nate shown by index, 1 =x, 2 =y, 3 =12

X = r.cos(theta).cos(phi)
y = r.cos(theta).sin(phi)
z = r.sin(theta)

Dimr_cos_theta As Doubl e
r_cos_theta = r * DegCos(theta)
Sel ect Case index
Case 1
rect angul ar
Case 2
rect angul ar
Case 3
rectangular = r * DegSi n(theta) "returns z coord
End Sel ect
End Function

r_cos_theta * DegCos(phi) 'returns x coord

r_cos_theta * DegSin(phi) "'returns y coord

Function rlength(x As Double, y As Double, z As Double) As Double
' returns radi us vector given the rectangul ar coords

rlength = Sgr(x * x +y *y + 2z * z)
End Function

Function spherical (x As Double, y As Double, z As Double, index As Integer) As Double
' Takes the rectangul ar coordinates and returns the shperica
coordi nate selected by index - 1 =r, 2 = theta, 3 = ph

astrofns - 4

' r = sgrt(x*x + y*y + z*z)
' tan(phi) = y/x - use atan2 to get in correct quadrant
' tan(theta) = z/sqrt(x*x + y*y) - |ikew se

Dimrho As Doubl e
rho = x * x +y *y
Sel ect Case i ndex

Case 1
spherical = Sqr(rho + z * z) "returns r
Case 2
rho = Sqr(rho)
spherical = DegArctan(z / rho) "returns theta
Case 3
rho = Sqr(rho)
spherical = DegAtan2(y, Xx) "returns phi
End Sel ect

End Functi on

returns the obliquity of the ecliptic in degrees given the nunber
of julian centuries from J2000

Most textbooks will give the 1AU fornula for the obliquity of
the ecliptic bel ow

obliquity = 23.43929111 - 46.8150"t - 0.00059"t”~2 + 0.001813*t"3

' as explained in Meeus or Nunerical Recipes, it is nore efficient and
' accurate to use the nested brackets shown in the function. If you
' multiply the brackets out, they cone to the sane.
Function obliquity(d As Double) As Double
Dimt As Double
t =d/ 36525 "julian centuries since J2000.0
obliquity = 23.43929111 - (46.815 + (0.00059 - 0.001813 * t) * t) * t / 3600#
End Function

functions for converting between equatorial and ecliptic
geocentric coordi nates, both polar and rectangul ar coords

' Converts geocentric ecliptic coordinates into geocentric equatori al
' coordi nates. Expects rectangul ar coordinates.

Function requatorial (x As Double, y As Double, z As Double, d As Doubl e,
i ndex As Integer) As Double
Di m obl As Doubl e
obl = obliquity(d)
Sel ect Case index
Case 1
requatori al
Case 2
requatorial =y * DegCos(obl) - z * DegSi n(obl)
Case 3
requatorial =y * DegSin(obl) + z * DegCos(obl)
End Sel ect
End Function

X

converts geocentric equatorial coordinates into geocentric ecliptic
coordi nates. Expects rectangul ar coordinates.

Function recliptic(x As Double, y As Double, z As Double, d As Doubl e,
i ndex As Integer) As Double

Di m obl As Doubl e

obl = obliquity(d)

astrofns - 5

Sel ect Case index
Case 1
recliptic
Case 2
recliptic =y * DegCos(obl) + z * DegSi n(obl)
Case 3
recliptic = -y * DegSin(obl) + z * DegCos(obl)
End Sel ect
End Function

X

' Converts geocentric ecliptic coordinates into geocentric equatori al
' coordi nates. Expects spherical coordinates.

Function sequatorial (r As Double, theta As Double, phi As Double, d As Doubl e,
i ndex As Integer) As Double
Dimx As Double, y As Double, z As Double

X = rectangul ar(r, theta, phi, 1)
y = rectangular(r, theta, phi, 2)
z = rectangular(r, theta, phi, 3)

sequatorial = spherical (requatorial (x, y, z, d, 1), requatorial(x, y, z, d, 2),
requatorial (x, y, z, d, 3), index)
End Function
' Converts geocentric equatorial coordinates into geocentric ecliptic
coordi nates. Expects spherical coordinates.

Function secliptic(r As Double, theta As Doubl e, phi As Double, d As Doubl e,
i ndex As Integer) As Double
Dimx As Double, y As Double, z As Double

X = rectangul ar(r, theta, phi, 1)
y = rectangular(r, theta, phi, 2)
z = rectangular(r, theta, phi, 3)

secliptic = spherical (recliptic(x, vy, z, d, 1), recliptic(x, y, z, d, 2),
recliptic(x, y, z, d, 3), index)
End Function

precession (approximate formula) from Meeus Al gorithns pl24
dl is the epoch to precess from d2 is the epoch to precess
to, and index selects ra or dec. The function takes optiona
argunents dra and ddec to represent the proper notion of a
star in seconds of arc per year

ra and dec nmust BOTH be in decinmal degrees. This fornula is
different to the one el sewhere on the Wb site!

Function precess(dl As Double, d2 As Double, dec As Doubl e,
ra As Double, index As Integer, _
Optional ddec, Optional dra) As Double

Dim m As Double, n As Double, t As Double

I sM ssing(dra)) Then dra =0

| sM ssing(ddec)) Then ddec = 0

dl / 36525 "years since J2000

—h —h
—~~

I
I
t

m = 0. 01281233333333 + 0.00000775 * t
n = 0.005567527777778 - 2.361111111111E-06 * t
t = (d2 - d1) / 365.25 "difference in julian _years_, not centuries!
Sel ect Case index
Case 1 ' dec
precess = dec + (n * DegCos(ra) + ddec / 3600) * t
Case 2 'ra

precess =ra + (m+ n * DegSin(ra) * DegTan(dec) + dra / 3600) * t
End Sel ect
End Function

The function bel ow returns the geocentric ecliptic coordinates of the sun
to an accuracy correspondi ng to about 0.01 degree over

100 years either side of J2000. Coordi nates returned

in spherical form From page C24 of the 1996 Astrononi ca

astrofns - 6

Al amanac. Conparing accuracy wi th Pl aneph, a DOS epheneris
by Chapront, we get;

Sun error
RA sec DEC arcsec

Max within 3 year 0.6 8.9
Mn within 3 year -2.1 -8.2
Max within 10 year 0.6 10.9
Mn within 10 year -2.6 -12.5
Max within 50 year 1.0 16. 8
Mn within 50 year -2.9 -16.1

Not e: Pl aneph was set to give output referred to nean
ecliptic and equi nox of date.

The accuracy of this routine is good enough for sunrise
and shadow direction calculations, and for referring

| ow precision planetary and conmet positions to the Earth,
but is no good for accurate coordi nate conversion or

for eclipse or occultation use.

' Error = C24 | ow precision nethod - Pl aneph
' Coordi nates are referred to the ecliptic and mean equi nox of date
Function ssun(d As Double, index As Integer) As Double
Dim g As Doubl e
Dim| As Double
g = range360(357.528 + 0.9856003 * d)
| = range360(280.461 + 0.9856474 * d)
Sel ect Case index
Case 1
" radius vector of Sun
ssun = 1.00014 - 0.01671 * DegCos(g) - 0.00014 * DegCos(2 * Q)
Case 2
ssun = 0 "ecliptic latitude of Sun is zero to very good accuracy
Case 3
"l ongi tude of Sun
ssun = range360(l + 1.915 * DegSin(g) + 0.02 * DegSin(2 * g))
End Sel ect
End Function

returns the geocentric ecliptic coordinates of the sun
to an accuracy correspondi ng to about 0.01 degree over
100 years either side of J2000. Assunes ssun() exists.

' rectangul ar formis easier for converting positions from helio-
' centric to geocentric, but beware | ow accuracy (roughly 0.01 degree)
' of val ues
Function rsun(d As Double, index As Integer) As Double
Dim x As Doubl e
Dmy As Doubl e
Dimz As Double
rsun = rectangul ar(ssun(d, 1), ssun(d, 2), ssun(d, 3), index)
End Function

' sun() returns the geocentric ra and dec and radi us vector
' of the noon - calls snoon three tinmes, and sequatori al

' three tinmes - sequatorial calls rectangular three tinmes

' each!

Function sun(d As Double, index As Integer) As Double
sun = sequatorial (ssun(d, 1), ssun(d, 2), ssun(d, 3), d, index)
End Function
' The function bel ow i mpl enents Paul Schlyter's sinplification
' of van Flandern and Pul kki nen's method for finding the geocentric

astrofns - 7
ecliptic positions of the Moon to an accuracy of about 1 to 4 arcmn.

' | can probably reduce the nunber of variables, and there nust
' be a qui cker way of declaring vari abl es!

The VBA trig functions have been used throughout for speed,
note how the atan function returns values in domain -pi to pi

Function snoon(ByVal d As Double, index As Integer) As Double
Dim Nm As Doubl e, im As Double, wm As Doubl e, am As Doubl e, ecm As Doubl e,
Mm As Doubl e, em As Double, Ms As Double, ws As Double, xv As Doubl e,
yv As Double, vm As Double, rm As Double, x As Double, y As Double, _
z As Double, lon As Double, |at As Double, Is As Double, | mAs Double,
dm As Doubl e, F As Doubl e, dlong As Double, dlat As Doubl e
' Paul 's routine uses a slightly different definition of
' the day nunber - | adjust for it below Renenber that VBA
' defaults to 'pass by reference' so this change in d
' will be visible to other functions unless you set d to 'ByVal'
' to force it to be passed by val ue!
d=d+ 1.5
' noon el enents

Nm = range360(125. 1228 - 0.0529538083 * d) * rads
im= 5.1454 * rads

wm = range360(318. 0634 + 0.1643573223 * d) * rads
am = 60.2666 '(Earth radii)

ecm = 0. 0549

Mm = range360(115. 3654 + 13. 0649929509 * d) * rads

' position of Mon

em= Mn+ecm* Sin(My) * (1# + ecm* Cos(Mn))

xv = am* (Cos(em) - ecm

yv = am* (Sgr(1# - ecm* ecm) * Sin(em)

vm = Application. Atan2(xv, yv)

' If vm< O Then vm= tpi + vm

rm= Sgr(xv * xv + yv * yv)

X =rm* (Cos(Nm * Cos(vm+ wr) - Sin(Nm) * Sin(vm+ wr) * Cos(im)
y =rm* (Sin(NmM * Cos(vm+ wm) + Cos(Nm * Sin(vm+ wr) * Cos(in))
z=rm* (Sin(fvm+ wn) * Sin(in)

' nmoons geocentric long and | at

lon = Application. Atan2(x, V)

If lon < 0 Then lon =tpi + lon

lat = Atn(z / SgQr(x * x +y * vy))

' mean | ongi tude of sun

ws = range360(282.9404 + 0.0000470935 * d) * rads

Ms = range360(356.047 + 0.9856002585 * d) * rads

' perturbations

' first calcul ate argunments bel ow,

"Ms, Mm Mean Anomaly of the Sun and the Moon

" Nm Longi tude of the Mon's node

"ws, wm Argunent of perihelion for the Sun and the Mon
s = M + WS ' Mean Longitude of the Sun (Ns=0)

Im= Mn+ wn+ Nm ' Man |ongitude of the Mon

dm=1I1m- Is ' Mean el ongation of the Mon

F=Im- Nm "Argunment of latitude for the Mon

" then add the following terns to the |ongitude
' note anplitudes are in degrees, convert at end
Sel ect Case index
Case 1 ' di stance terns earth radii
rm=rm- 0.58 * Cos(Mn- 2 * dn
rm=rm- 0.46 * Cos(2 * dm
smoon = rm
Case 2 ' latitude terns

dlat = -0.173 * Sin(F - 2 * dm
dlat = dlat - 0.055 * Sin(Mn- F - 2 * dm
dlat = dlat - 0.046 * Sin(Mn+ F - 2 * dm
dlat = dlat + 0.033 * Sin(F + 2 * dn
dlat = dlat + 0.017 * Sin(2 * Mn+ F)

snoon = |lat * degs + dl at
Case 3 ' | ongi tude terns

astrofns - 8

End

dl on
dl on
dl on
dl on
dl on
dl on
dl on
dl on
dl on
dl on
dl on
dl on
snmoon =
End Sel ect
Functi on

-1.274

dl on
dl on
dl on
dl on
dl on
dl on
dl on
dl on
dl on
dl on

dl on +

| on

*
0
0
0
0
0
0.
0
0
0
0
0
d

. 658
. 186
. 059
. 057
. 053
046
. 041
. 035
. 031
. 015
011

Sin(Mn- 2 * dn

L R T G R

'(the Evection)

Sin(2 * dm "(the Variation)

Si n(MVs) "(the Yearly Equation)
Sin(2* Mn- 2 * dm

Sin(Mn- 2 * dm + M)

Sin(Mn+ 2 * dm

Sin(2 * dm- M)

Sin(Mn - M)
Sin(dm "(the Parallactic Equation)
Si n(Mm + Ms)

Sin(2* F- 2* dm
Sin(Mn- 4 * dn

égs + dl on

rmoon uses snoon to return the geocentric ecliptic rectangul ar coordinates
of the noon to | owi sh accuracy.

Function rnoon(d As Doubl e,

End

Functi on

i ndex As Integer) As Double
rmoon = rectangul ar (smoon(d, 1), smoon(d, 2), smoon(d, 3), index)

moon() returns the geocentric ra and dec and radi us vector
of the noon - calls snoon three tinmes, and sequatori al

three times - sequatorial

each!

Functi on moon(d As Doubl e,
Di m ni gel As Doubl e

End

Function kepl er(m As Doubl e,

End

calls rectangul ar three tines

i ndex As Integer) As Double

nmoon = sequatorial (snoon(d, 1), snoon(d, 2), snoon(d, 3), d, index)

If index = 4 Then
ni gel = smoon(d, 2)
noon = d

El se

End | f

Functi on

Solutions of the kepler equation using a Newton's nethod approach
See Meeus or Duffett-Smith (cal cul ator)

sol ves the equation e -

m - the 'mean anonaly'

ecc As Doubl e, Optional eps)

ecc*sin(e) = mfor e given an m
returns the value of the 'true anomaly' in rads

in rads

ecc - the eccentricity of the orbit

eps - the precision paraneter - solution will be
within 107-eps of the true val ue.
don't set eps above 14,
can't be guarant eed.
taken as 107-8 or

Dimdelta As Doubl e,

| f

as convergence
not specified, then

10 nano r adi ans!

e As Doubl e, v As Double

e =m "first guess
delta = 0.05 'set delta equal to a dummy val ue
If (IsMssing(eps)) Then eps = 8 "if no eps then assune 10"-8
Do Wiile Abs(delta) >= 10 * -eps ' conver ged?
delta = e - ecc * Sin(e) - m ''new error
e =e - delta/ (1 - ecc * Cos(e)) 'corrected guess
Loop

v =2%*An(((1 + ecc) / (1 -
= v + tpi

If v <0 Then v
kepler = v
Functi on

ecc)) » 0.5 * Tan(0.5 * e))

The functions below return the heliocentric ecliptic coordinates

astrofns - 9

of the planets to an accuracy of a few m nutes of arc. The coordi nates
are referred to the equi nox of J2000.0

The functions use a sinple Kepler ellipse, but with
mean el ements whi ch change slightly with the tinme since
J2000. See ' Explanatory supplenment to the Astronomni ca
Al manac' 1992, page 316, table 5.8.1. Wrst case errors
over the period 1800 - 2050 AD in arcsec are bel ow

Ra Dec
Mer cury 20" 5"
Venus 20" 5"
Earth 20" 5"
Mar s 25" 30"
Jupi ter 300" 100"
Sat urn 600" 200"
Ur anus 60" 25"
Nept une 40" 20"
Pl uto 40" 10"

The rplanet() function returns the ecliptic heliocentric coordi nates
of each of the major planets. You select the planet you want using
pnunber, and the coordi nate you want with index as usual

Function rplanet(d As Doubl e, pnunber As Integer, index As Integer) As Double

End

Dimx As Double, y As Double, z As Double, v As Double, m As Doubl e,
i As Double, o As Double, p As Double, a As Double, e As Doubl e,
| As Double, r As Double

get elenents of the planet

element i, o, p, a, e, |, d, pnunber

' position of planet in its orbit
m = range2pi (I - p)

v = kepler(m e, 8)

r=a* (1-e*e)/ (1 +e* Cos(v))

hel i ocentric rectangul ar coordi nates of pl anet

Sel ect Case i ndex

Case 1 'x coordinate
rplanet = r * (Cos(o) * Cos(v + p - 0) - Sin(o) * Sin(v + p - o) * Cos(i))
Case 2 'y coordi nate

rplanet = r * (Sin(o) * Cos(v + p - o) + Cos(o) * Sin(v + p - o) * Cos(i))
Case 3 'z coordinate

rplanet =r * (Sin(v + p - 0) * Sin(i))
End Sel ect
Functi on

The planet() function returns the equatorial geocentric coordinates
of each of the major planets. You select the planet you want using
pnunber, and the coordinate you want with index as usual. Code is

duplicated fromrplanet() to reduce the nunber of calls to kepler()

Function planet(d As Doubl e, pnunber As Integer, index As Integer) As Double

Dimx As Double, y As Double, z As Double, v As Double, m As Doubl e,

i As Double, o As Double, p As Double, a As Double, e As Double, _

| As Double, r As Double, xe As Double, ye As Double, ze As Double, _
sl As Double, si As Double, so As Double, cl As Double, ci As Doubl e,
co As Doubl e

el ements of planet - select fromthe val ues

astrofns - 10

element i, o, p, a, e, |, d, pnunber

position of planet in its orbit

m = range2pi (I - p)

v = kepler(m e, 8)

r=a* (1-e*e)/ (1 +e* Cos(v))

' hel i ocentric rectangul ar coordi nates of pl anet
sl =Sin(v +p - 0)

si = Sin(i)

so = Sin(o)

cl = Cos(v + p - 0)

ci = Cos(i)

co = Cos(0)

X =r * (co* cl- so* sl*ci)

y =r * (so* cl +co* sl * ci)

z=r * (sl * si)

' el ements of earth (reusing variabl es)

elemrent i, o, p, a, e, |, d, 3

' position of earth in its orbit

m = range2pi (I - p)

v = kepler(m e, 8)

r=a* (1-e*e)/ (1 +e* Cos(v))

' hel i ocentric rectangul ar coordi nates of earth
sl =Sin(v +p - 0)

si = Sin(i)

so = Sin(o)

cl = Cos(v + p - 0)

ci = Cos(i)

co = Cos(0)

xe =r * (co* cl- so* sl * ci)

ye =r * (so* cl +co * sl * ci)

ze =r * (sl * si)

' convert to geocentric rectangul ar coordi nates
X = X - Xxe

y =y - ye

' z =2

' rotate around x axis fromecliptic to equatorial coords
ecl = 23.429292 * rads "val ue for J2000.0 frane
xe = X

ye =y * Cos(ecl) - z * Sin(ecl)

ze =y * Sin(ecl) + z * Cos(ecl)

' find the RA and DEC fromthe rectangul ar equatorial coords
Sel ect Case index
Case 3

' RA in degrees

pl anet = Application. Atan2(xe, ye) * degs

If planet < O Then planet = 360 + pl anet
Case 2

' DEC in degrees

pl anet = Atn(ze / Sgr(xe * xe + ye * ye)) * degs
Case 1

" Radius vector in au

astrofns - 11

pl anet = Sgr(xe * xe + ye * ye + ze * ze)
End Sel ect
End Function

The subroutine bel ow repl aces the values of i,0,p,a, e, L
with the values for the planet selected by pnum You could
al ways add planet |ike objects, but watch the val ue of

the inclination i. The nmethod used in planet is only

good for orbits '"near' the ecliptic.

This is an exanple of the Visual Basic default 'passing by
ref erence’

Sub el enent (i As Double, o As Double, p As Doubl e,
a As Double, e As Double, | As Double, _
ByvVal d As Doubl e, ByVal pnum As Integer)
Sel ect Case pnum
Case 1 "mercury
i (7.00487 - 0.000000178797 * d) * rads
(48.33167 - 0.0000033942 * d) * rads
(77.45645 + 0.00000436208 * d) * rads
0. 38709893 + 1.80698E-11 * d
0. 20563069 + 0.000000000691855 * d
range2pi (rads * (252.25084 + 4.092338796 * d))
Case 2 'venus
i (3.39471 - 0.0000000217507 * d) * rads
(76.68069 - 0.0000075815 * d) * rads
(131.53298 - 0.000000827439 * d) * rads
0.72333199 + 2.51882E-11 * d
0. 00677323 - 0.00000000135195 * d
range2pi (rads * (181.97973 + 1.602130474 * d))
Case 3 "earth
i (0. 00005 - 0.000000356985 * d) * rads
(-11.26064 - 0.00013863 * d) * rads
(102.94719 + 0.00000911309 * d) * rads
1. 00000011 - 1.36893E-12 * d
0. 01671022 - 0.00000000104148 * d
range2pi (rads * (100.46435 + 0.985609101 * d))
Case 4 "mars
i (1.85061 - 0.000000193703 * d) * rads
(49.57854 - 0.0000077587 * d) * rads
(336. 04084 + 0.00001187 * d) * rads
1.52366231 - 0.000000001977 * d
0. 09341233 - 0.00000000325859 * d
range2pi (rads * (355.45332 + 0.524033035 * d))
Case 5 "jupiter
i (1.3053 - 0.0000000315613 * d) * rads
(100. 55615 + 0.00000925675 * d) * rads
(14. 75385 + 0.00000638779 * d) * rads
5.20336301 + 0.0000000166289 * d
0. 04839266 - 0.00000000352635 * d
range2pi (rads * (34.40438 + 0.083086762 * d))
Case 6 "saturn
i (2.48446 + 0.0000000464674 * d) * rads
(113.71504 - 0.0000121 * d) * rads
(92.43194 - 0.0000148216 * d) * rads
9. 53707032 - 0.0000000825544 * d
0. 0541506 - 0.0000000100649 * d
range2pi (rads * (49.94432 + 0.033470629 * d))
Case 7 ''uranus
i (0.76986 - 0.0000000158947 * d) * rads
(74.22988 + 0.0000127873 * d) * rads
(170. 96424 + 0.0000099822 * d) * rads
19. 19126393 + 0.0000000416222 * d
0. 04716771 - 0.00000000524298 * d
range2pi (rads * (313.23218 + 0.011731294 * d))
Case 8 ' nept une
i = (1.76917 - 0.0000000276827 * d) * rads

—O0® YT O — —0® YT O — —O0® ®YT O — —OD® ®YT O — —OD® ®T O — —OD® ®T O —
I n I n I n I n I n I n

—O0® YT O —
I n

astrofns - 12

(131. 72169 - 0.0000011503 * d) * rads
(44.97135 - 0.00000642201 * d) * rads

30. 06896348 - 0.0000000342768 * d

0. 00858587 + 0.000000000688296 * d

range2pi (rads * (304.88003 + 0.0059810572 * d))
Case 9 "pluto

i (17.14175 + 0.0000000841889 * d) * rads

—® 9T O

| =

0o = (110.30347 - 0.0000002839 * d) * rads

p = (224.06676 - 0.00000100578 * d) * rads

a = 39.48168677 - 0.0000000210574 * d

e = 0.24880766 + 0.00000000177002 * d

| = range2pi (rads * (238.92881 + 3.97557152635181E-03 * d))
End Sel ect

End Sub

