
astrofns - 1

' A series of astronomical functions which may be
' useful. These are all 'user defined functions'.
' This means that you can paste them into spreadsheets
' just like the normal functions - see Insert|function,
' you can even use the function wizard.

' The disadvantage
' of Excel's 'user defined functions' is that they
' can only return a single value, and the function cannot alter
' the properties of the worksheet. Arguments you pass to
' the VBA functions you define are passed 'by value'.

' However, VBA defaults to 'passing arguments by reference'
' when a function is called from another VBA function! This
' can lead to a function giving a different answer when
' called in the VBA module compared with when called in the
' spreadsheet. Use the ByVal keyword to tag arguments you
' change later in functions. See smoon() for an example.

' define some numerical constants - these are not
' accessible in the spreadsheet.

Public Const pi As Double = 3.14159265358979
Public Const tpi As Double = 6.28318530717958
Public Const degs As Double = 57.2957795130823
Public Const rads As Double = 1.74532925199433E-02

' The trig formulas working in degrees. This just
' makes the spreadsheet formulas a bit easier to
' read. DegAtan2() has had the arguments swapped
' from the Excel order, so the order matches most
' textbooks

Function DegSin(x As Double) As Double
 DegSin = Sin(rads * x)
End Function

Function DegCos(x As Double) As Double
 DegCos = Cos(rads * x)
End Function

Function DegTan(x As Double) As Double
 DegTan = Tan(rads * x)
End Function

Function DegArcsin(x As Double) As Double
 DegArcsin = degs * Application.Asin(x)
End Function

Function DegArccos(x As Double) As Double
 DegArccos = degs * Application.Acos(x)
End Function

Function DegArctan(x As Double) As Double
 DegArctan = degs * Atn(x)
End Function

Function DegAtan2(y As Double, x As Double) As Double
' this returns the angle in the range 0 to 360
' instead of -180 to 180 - and swaps the arguments
' This format matches Meeus and Duffett-Smith
 DegAtan2 = degs * Application.Atan2(x, y)
 If DegAtan2 < 0 Then DegAtan2 = DegAtan2 + 360
End Function

Private Function range2pi(x)
'

astrofns - 2

' returns an angle x in the range 0 to two pi rads
' This function is not available in the spreadsheet
'
range2pi = x - tpi * Int(x / tpi)
End Function

Private Function range360(x)
'
' returns an angle x in the range 0 to 360
' used to prevent the huge values of degrees
' that you get from mean longitude formulas
'
' this function is private to this module,
' you won't find it in the Function Wizard,
' and you can't use it on a spreadsheet.
' If you want it on the spreadsheet, just remove
' the 'private' keyword above.
'
range360 = x - 360 * Int(x / 360)
End Function

Function degdecimal(d, m, s)
' converts from dms format to ddd format
 degdecimal = d + m / 60 + s / 3600
End Function

'
' calander functions. jday and jcentury work on the Julian day numbers.
' day2000 and century2000 work on the days to J2000 to reduce the
' number of significant figures needed
'

Function jday(year As Integer, month As Integer, day As Integer, hour As Integer, _
 min As Integer, sec As Double, Optional greg) As Double
 ' returns julian day number given date in gregorian calender (greg=1)
 ' or julian calendar (greg = 0). If greg ommited, then Gregorian is assumed.
 Dim a As Double
 Dim b As Integer
 a = 10000# * year + 100# * month + day
 If (a < -47120101) Then MsgBox "Warning: date too early for algorithm"
 If (IsMissing(greg)) Then greg = 1
 If (month <= 2) Then
 month = month + 12
 year = year - 1
 End If
 If (greg = 0) Then
 b = -2 + Fix((year + 4716) / 4) - 1179
 Else
 b = Fix(year / 400) - Fix(year / 100) + Fix(year / 4)
 End If
 a = 365# * year + 1720996.5
 jday = a + b + Fix(30.6001 * (month + 1)) + day + (hour + min / 60 + sec / 3600) / 24
End Function

Function jcentury(jd As Double) As Double
' finds how many julian centuries since J2000 given
' the julian day number. Not used below, I just add
' a line into the subroutines which then take days
' before J2000 as the time argument
 jcentury = (jd - 2451545) / 36525
End Function

Function day2000(year As Integer, month As Integer, day As Integer, hour As Integer, _
 min As Integer, sec As Double, Optional greg) As Double
 ' returns days before J2000.0 given date in gregorian calender (greg=1)
 ' or julian calendar (greg = 0). If you don't provide a value for greg,
 ' then assumed Gregorian calender
 Dim a As Double

astrofns - 3

 Dim b As Integer
 If (IsMissing(greg)) Then greg = 1
 a = 10000# * year + 100# * month + day
 If (month <= 2) Then
 month = month + 12
 year = year - 1
 End If
 If (greg = 0) Then
 b = -2 + Fix((year + 4716) / 4) - 1179
 Else
 b = Fix(year / 400) - Fix(year / 100) + Fix(year / 4)
 End If
 a = 365# * year - 730548.5
 day2000 = a + b + Fix(30.6001 * (month + 1)) + day + (hour + min / 60 + sec / 3600) / 24
End Function

Function century2000(day2000 As Double) As Double
' finds how many julian centuries since J2000 given
' the days before J2000
 century2000 = day2000 / 36525
End Function

'
' Conversion to and from rectangular and polar coordinates.
' X,Y,Z form a left handed set of axes, and r is the radius vector
' of the point from the origin. Theta is the elevation angle of
' r with the XY plane, and phi is the angle anti-clockwise from the
' X axis and the projection of r in the X,Y plane.
'
' in astronomical coordinate systems,
'
' item equatorial ecliptic (helio or geo centric)
' z celestial pole ecliptic pole
' x,y equatorial plane ecliptic
' theta declination latitude
' phi right ascension longitude
'

Function rectangular(r As Double, theta As Double, phi As Double, _
 index As Integer) As Double
 ' takes spherical coordinates in degrees and returns the rectangular
 ' coordinate shown by index, 1 = x, 2 = y, 3 = z
 '
 ' x = r.cos(theta).cos(phi)
 ' y = r.cos(theta).sin(phi)
 ' z = r.sin(theta)
 '
 Dim r_cos_theta As Double
 r_cos_theta = r * DegCos(theta)
 Select Case index
 Case 1
 rectangular = r_cos_theta * DegCos(phi) 'returns x coord
 Case 2
 rectangular = r_cos_theta * DegSin(phi) 'returns y coord
 Case 3
 rectangular = r * DegSin(theta) 'returns z coord
 End Select
End Function

Function rlength(x As Double, y As Double, z As Double) As Double
' returns radius vector given the rectangular coords
 rlength = Sqr(x * x + y * y + z * z)
End Function

Function spherical(x As Double, y As Double, z As Double, index As Integer) As Double
'
' Takes the rectangular coordinates and returns the shperical
' coordinate selected by index - 1 = r, 2 = theta, 3 = phi

astrofns - 4

'
' r = sqrt(x*x + y*y + z*z)
' tan(phi) = y/x - use atan2 to get in correct quadrant
' tan(theta) = z/sqrt(x*x + y*y) - likewise
'
 Dim rho As Double
 rho = x * x + y * y
 Select Case index
 Case 1
 spherical = Sqr(rho + z * z) 'returns r
 Case 2
 rho = Sqr(rho)
 spherical = DegArctan(z / rho) 'returns theta
 Case 3
 rho = Sqr(rho)
 spherical = DegAtan2(y, x) 'returns phi
 End Select
End Function

'
' returns the obliquity of the ecliptic in degrees given the number
' of julian centuries from J2000
'
' Most textbooks will give the IAU formula for the obliquity of
' the ecliptic below;
'
' obliquity = 23.43929111 - 46.8150"t - 0.00059"t^2 + 0.001813*t^3
'
' as explained in Meeus or Numerical Recipes, it is more efficient and
' accurate to use the nested brackets shown in the function. If you
' multiply the brackets out, they come to the same.
'
Function obliquity(d As Double) As Double
 Dim t As Double
 t = d / 36525 'julian centuries since J2000.0
 obliquity = 23.43929111 - (46.815 + (0.00059 - 0.001813 * t) * t) * t / 3600#
End Function

'
' functions for converting between equatorial and ecliptic
' geocentric coordinates, both polar and rectangular coords
'

'
' Converts geocentric ecliptic coordinates into geocentric equatorial
' coordinates. Expects rectangular coordinates.
'
Function requatorial(x As Double, y As Double, z As Double, d As Double, _
 index As Integer) As Double
 Dim obl As Double
 obl = obliquity(d)
 Select Case index
 Case 1
 requatorial = x
 Case 2
 requatorial = y * DegCos(obl) - z * DegSin(obl)
 Case 3
 requatorial = y * DegSin(obl) + z * DegCos(obl)
 End Select
End Function
'
' converts geocentric equatorial coordinates into geocentric ecliptic
' coordinates. Expects rectangular coordinates.
'
Function recliptic(x As Double, y As Double, z As Double, d As Double, _
 index As Integer) As Double
 Dim obl As Double
 obl = obliquity(d)

astrofns - 5

 Select Case index
 Case 1
 recliptic = x
 Case 2
 recliptic = y * DegCos(obl) + z * DegSin(obl)
 Case 3
 recliptic = -y * DegSin(obl) + z * DegCos(obl)
 End Select
End Function

'
' Converts geocentric ecliptic coordinates into geocentric equatorial
' coordinates. Expects spherical coordinates.
'
Function sequatorial(r As Double, theta As Double, phi As Double, d As Double, _
 index As Integer) As Double
 Dim x As Double, y As Double, z As Double
 x = rectangular(r, theta, phi, 1)
 y = rectangular(r, theta, phi, 2)
 z = rectangular(r, theta, phi, 3)
 sequatorial = spherical(requatorial(x, y, z, d, 1), requatorial(x, y, z, d, 2), _
 requatorial(x, y, z, d, 3), index)
End Function

' Converts geocentric equatorial coordinates into geocentric ecliptic
' coordinates. Expects spherical coordinates.
'
Function secliptic(r As Double, theta As Double, phi As Double, d As Double, _
 index As Integer) As Double
 Dim x As Double, y As Double, z As Double
 x = rectangular(r, theta, phi, 1)
 y = rectangular(r, theta, phi, 2)
 z = rectangular(r, theta, phi, 3)
 secliptic = spherical(recliptic(x, y, z, d, 1), recliptic(x, y, z, d, 2), _
 recliptic(x, y, z, d, 3), index)
End Function
'
' precession (approximate formula) from Meeus Algorithms p124
' d1 is the epoch to precess from, d2 is the epoch to precess
' to, and index selects ra or dec. The function takes optional
' arguments dra and ddec to represent the proper motion of a
' star in seconds of arc per year.
'
' ra and dec must BOTH be in decimal degrees. This formula is
' different to the one elsewhere on the Web site!
'
Function precess(d1 As Double, d2 As Double, dec As Double, _
 ra As Double, index As Integer, _
 Optional ddec, Optional dra) As Double
Dim m As Double, n As Double, t As Double
If (IsMissing(dra)) Then dra = 0
If (IsMissing(ddec)) Then ddec = 0
t = d1 / 36525 'years since J2000
m = 0.01281233333333 + 0.00000775 * t
n = 0.005567527777778 - 2.361111111111E-06 * t
t = (d2 - d1) / 365.25 'difference in julian _years_, not centuries!
Select Case index
 Case 1 'dec
 precess = dec + (n * DegCos(ra) + ddec / 3600) * t
 Case 2 'ra
 precess = ra + (m + n * DegSin(ra) * DegTan(dec) + dra / 3600) * t
End Select
End Function
'
' The function below returns the geocentric ecliptic coordinates of the sun
' to an accuracy corresponding to about 0.01 degree over
' 100 years either side of J2000. Coordinates returned
' in spherical form. From page C24 of the 1996 Astronomical

astrofns - 6

' Alamanac. Comparing accuracy with Planeph, a DOS ephemeris
' by Chapront, we get;
'
' Sun error
' RA sec DEC arcsec
' Max within 3 year 0.6 8.9
' Min within 3 year -2.1 -8.2
' Max within 10 year 0.6 10.9
' Min within 10 year -2.6 -12.5
' Max within 50 year 1.0 16.8
' Min within 50 year -2.9 -16.1
'
' Error = C24 low precision method - Planeph
'
' Note: Planeph was set to give output referred to mean
' ecliptic and equinox of date.
'
' The accuracy of this routine is good enough for sunrise
' and shadow direction calculations, and for referring
' low precision planetary and comet positions to the Earth,
' but is no good for accurate coordinate conversion or
' for eclipse or occultation use.
'
' Coordinates are referred to the ecliptic and mean equinox of date
'
Function ssun(d As Double, index As Integer) As Double
 Dim g As Double
 Dim l As Double
 g = range360(357.528 + 0.9856003 * d)
 l = range360(280.461 + 0.9856474 * d)
 Select Case index
 Case 1
 ' radius vector of Sun
 ssun = 1.00014 - 0.01671 * DegCos(g) - 0.00014 * DegCos(2 * g)
 Case 2
 ssun = 0 'ecliptic latitude of Sun is zero to very good accuracy
 Case 3
 'longitude of Sun
 ssun = range360(l + 1.915 * DegSin(g) + 0.02 * DegSin(2 * g))
 End Select
End Function

' returns the geocentric ecliptic coordinates of the sun
' to an accuracy corresponding to about 0.01 degree over
' 100 years either side of J2000. Assumes ssun() exists.
'
' rectangular form is easier for converting positions from helio-
' centric to geocentric, but beware low accuracy (roughly 0.01 degree)
' of values
'
Function rsun(d As Double, index As Integer) As Double
 Dim x As Double
 Dim y As Double
 Dim z As Double
 rsun = rectangular(ssun(d, 1), ssun(d, 2), ssun(d, 3), index)
End Function
'
' sun() returns the geocentric ra and dec and radius vector
' of the moon - calls smoon three times, and sequatorial
' three times - sequatorial calls rectangular three times
' each!
'
Function sun(d As Double, index As Integer) As Double
 sun = sequatorial(ssun(d, 1), ssun(d, 2), ssun(d, 3), d, index)
End Function
'
' The function below implements Paul Schlyter's simplification
' of van Flandern and Pulkkinen's method for finding the geocentric

astrofns - 7

' ecliptic positions of the Moon to an accuracy of about 1 to 4 arcmin.
'
' I can probably reduce the number of variables, and there must
' be a quicker way of declaring variables!
'
' The VBA trig functions have been used throughout for speed,
' note how the atan function returns values in domain -pi to pi
'
Function smoon(ByVal d As Double, index As Integer) As Double
 Dim Nm As Double, im As Double, wm As Double, am As Double, ecm As Double, _
 Mm As Double, em As Double, Ms As Double, ws As Double, xv As Double, _
 yv As Double, vm As Double, rm As Double, x As Double, y As Double, _
 z As Double, lon As Double, lat As Double, ls As Double, lm As Double, _
 dm As Double, F As Double, dlong As Double, dlat As Double
 ' Paul's routine uses a slightly different definition of
 ' the day number - I adjust for it below. Remember that VBA
 ' defaults to 'pass by reference' so this change in d
 ' will be visible to other functions unless you set d to 'ByVal'
 ' to force it to be passed by value!
 d = d + 1.5
 ' moon elements
 Nm = range360(125.1228 - 0.0529538083 * d) * rads
 im = 5.1454 * rads
 wm = range360(318.0634 + 0.1643573223 * d) * rads
 am = 60.2666 '(Earth radii)
 ecm = 0.0549
 Mm = range360(115.3654 + 13.0649929509 * d) * rads
 ' position of Moon
 em = Mm + ecm * Sin(Mm) * (1# + ecm * Cos(Mm))
 xv = am * (Cos(em) - ecm)
 yv = am * (Sqr(1# - ecm * ecm) * Sin(em))
 vm = Application.Atan2(xv, yv)
 ' If vm < 0 Then vm = tpi + vm
 rm = Sqr(xv * xv + yv * yv)
 x = rm * (Cos(Nm) * Cos(vm + wm) - Sin(Nm) * Sin(vm + wm) * Cos(im))
 y = rm * (Sin(Nm) * Cos(vm + wm) + Cos(Nm) * Sin(vm + wm) * Cos(im))
 z = rm * (Sin(vm + wm) * Sin(im))
 ' moons geocentric long and lat
 lon = Application.Atan2(x, y)
 If lon < 0 Then lon = tpi + lon
 lat = Atn(z / Sqr(x * x + y * y))
 ' mean longitude of sun
 ws = range360(282.9404 + 0.0000470935 * d) * rads
 Ms = range360(356.047 + 0.9856002585 * d) * rads
 ' perturbations
 ' first calculate arguments below,
 'Ms, Mm Mean Anomaly of the Sun and the Moon
 'Nm Longitude of the Moon's node
 'ws, wm Argument of perihelion for the Sun and the Moon
 ls = Ms + ws 'Mean Longitude of the Sun (Ns=0)
 lm = Mm + wm + Nm 'Mean longitude of the Moon
 dm = lm - ls 'Mean elongation of the Moon
 F = lm - Nm 'Argument of latitude for the Moon
 ' then add the following terms to the longitude
 ' note amplitudes are in degrees, convert at end
 Select Case index
 Case 1 ' distance terms earth radii
 rm = rm - 0.58 * Cos(Mm - 2 * dm)
 rm = rm - 0.46 * Cos(2 * dm)
 smoon = rm
 Case 2 ' latitude terms
 dlat = -0.173 * Sin(F - 2 * dm)
 dlat = dlat - 0.055 * Sin(Mm - F - 2 * dm)
 dlat = dlat - 0.046 * Sin(Mm + F - 2 * dm)
 dlat = dlat + 0.033 * Sin(F + 2 * dm)
 dlat = dlat + 0.017 * Sin(2 * Mm + F)
 smoon = lat * degs + dlat
 Case 3 ' longitude terms

astrofns - 8

 dlon = -1.274 * Sin(Mm - 2 * dm) '(the Evection)
 dlon = dlon + 0.658 * Sin(2 * dm) '(the Variation)
 dlon = dlon - 0.186 * Sin(Ms) '(the Yearly Equation)
 dlon = dlon - 0.059 * Sin(2 * Mm - 2 * dm)
 dlon = dlon - 0.057 * Sin(Mm - 2 * dm + Ms)
 dlon = dlon + 0.053 * Sin(Mm + 2 * dm)
 dlon = dlon + 0.046 * Sin(2 * dm - Ms)
 dlon = dlon + 0.041 * Sin(Mm - Ms)
 dlon = dlon - 0.035 * Sin(dm) '(the Parallactic Equation)
 dlon = dlon - 0.031 * Sin(Mm + Ms)
 dlon = dlon - 0.015 * Sin(2 * F - 2 * dm)
 dlon = dlon + 0.011 * Sin(Mm - 4 * dm)
 smoon = lon * degs + dlon
 End Select
End Function
'
' rmoon uses smoon to return the geocentric ecliptic rectangular coordinates
' of the moon to lowish accuracy.
'
'
Function rmoon(d As Double, index As Integer) As Double
 rmoon = rectangular(smoon(d, 1), smoon(d, 2), smoon(d, 3), index)
End Function
'
' moon() returns the geocentric ra and dec and radius vector
' of the moon - calls smoon three times, and sequatorial
' three times - sequatorial calls rectangular three times
' each!
'
Function moon(d As Double, index As Integer) As Double
Dim nigel As Double
 If index = 4 Then
 nigel = smoon(d, 2)
 moon = d
 Else
 moon = sequatorial(smoon(d, 1), smoon(d, 2), smoon(d, 3), d, index)
 End If
End Function
'
' Solutions of the kepler equation using a Newton's method approach.
' See Meeus or Duffett-Smith (calculator)
'
Function kepler(m As Double, ecc As Double, Optional eps)
' solves the equation e - ecc*sin(e) = m for e given an m
' returns the value of the 'true anomaly' in rads
' m - the 'mean anomaly' in rads
' ecc - the eccentricity of the orbit
' eps - the precision parameter - solution will be
' within 10^-eps of the true value.
' don't set eps above 14, as convergence
' can't be guaranteed. If not specified, then
' taken as 10^-8 or 10 nano radians!
'
 Dim delta As Double, e As Double, v As Double

 e = m 'first guess
 delta = 0.05 'set delta equal to a dummy value
 If (IsMissing(eps)) Then eps = 8 'if no eps then assume 10^-8
 Do While Abs(delta) >= 10 ^ -eps 'converged?
 delta = e - ecc * Sin(e) - m 'new error
 e = e - delta / (1 - ecc * Cos(e)) 'corrected guess
 Loop
 v = 2 * Atn(((1 + ecc) / (1 - ecc)) ^ 0.5 * Tan(0.5 * e))
 If v < 0 Then v = v + tpi
 kepler = v
End Function
'
' The functions below return the heliocentric ecliptic coordinates

astrofns - 9

' of the planets to an accuracy of a few minutes of arc. The coordinates
' are referred to the equinox of J2000.0
'
' The functions use a simple Kepler ellipse, but with
' mean elements which change slightly with the time since
' J2000. See 'Explanatory supplement to the Astronomical
' Almanac' 1992, page 316, table 5.8.1. Worst case errors
' over the period 1800 - 2050 AD in arcsec are below;
'
' Ra Dec
' Mercury 20" 5"
' Venus 20" 5"
' Earth 20" 5"
' Mars 25" 30"
' Jupiter 300" 100"
' Saturn 600" 200"
' Uranus 60" 25"
' Neptune 40" 20"
' Pluto 40" 10"
'

'
' The rplanet() function returns the ecliptic heliocentric coordinates
' of each of the major planets. You select the planet you want using
' pnumber, and the coordinate you want with index as usual.
'
Function rplanet(d As Double, pnumber As Integer, index As Integer) As Double
 Dim x As Double, y As Double, z As Double, v As Double, m As Double, _
 i As Double, o As Double, p As Double, a As Double, e As Double, _
 l As Double, r As Double
 '
 ' get elements of the planet
 '
 element i, o, p, a, e, l, d, pnumber
 '
 ' position of planet in its orbit
 '
 m = range2pi(l - p)
 v = kepler(m, e, 8)
 r = a * (1 - e * e) / (1 + e * Cos(v))
 '
 ' heliocentric rectangular coordinates of planet
 '
 Select Case index
 Case 1 'x coordinate
 rplanet = r * (Cos(o) * Cos(v + p - o) - Sin(o) * Sin(v + p - o) * Cos(i))
 Case 2 'y coordinate
 rplanet = r * (Sin(o) * Cos(v + p - o) + Cos(o) * Sin(v + p - o) * Cos(i))
 Case 3 'z coordinate
 rplanet = r * (Sin(v + p - o) * Sin(i))
 End Select
End Function
'
'
' The planet() function returns the equatorial geocentric coordinates
' of each of the major planets. You select the planet you want using
' pnumber, and the coordinate you want with index as usual. Code is
' duplicated from rplanet() to reduce the number of calls to kepler()
'
'
Function planet(d As Double, pnumber As Integer, index As Integer) As Double
 Dim x As Double, y As Double, z As Double, v As Double, m As Double, _
 i As Double, o As Double, p As Double, a As Double, e As Double, _
 l As Double, r As Double, xe As Double, ye As Double, ze As Double, _
 s1 As Double, si As Double, so As Double, c1 As Double, ci As Double, _
 co As Double
 '
 ' elements of planet - select from the values

astrofns - 10

 '
 element i, o, p, a, e, l, d, pnumber
 '
 ' position of planet in its orbit
 '
 m = range2pi(l - p)
 v = kepler(m, e, 8)
 r = a * (1 - e * e) / (1 + e * Cos(v))
 '
 ' heliocentric rectangular coordinates of planet
 '
 s1 = Sin(v + p - o)
 si = Sin(i)
 so = Sin(o)
 c1 = Cos(v + p - o)
 ci = Cos(i)
 co = Cos(o)
 x = r * (co * c1 - so * s1 * ci)
 y = r * (so * c1 + co * s1 * ci)
 z = r * (s1 * si)
 '
 ' elements of earth (reusing variables)
 '
 element i, o, p, a, e, l, d, 3
 '
 ' position of earth in its orbit
 '
 m = range2pi(l - p)
 v = kepler(m, e, 8)
 r = a * (1 - e * e) / (1 + e * Cos(v))
 '
 ' heliocentric rectangular coordinates of earth
 '
 s1 = Sin(v + p - o)
 si = Sin(i)
 so = Sin(o)
 c1 = Cos(v + p - o)
 ci = Cos(i)
 co = Cos(o)
 xe = r * (co * c1 - so * s1 * ci)
 ye = r * (so * c1 + co * s1 * ci)
 ze = r * (s1 * si)
 '
 ' convert to geocentric rectangular coordinates
 '
 x = x - xe
 y = y - ye
 ' z = z
 '
 ' rotate around x axis from ecliptic to equatorial coords
 '
 ecl = 23.429292 * rads 'value for J2000.0 frame
 xe = x
 ye = y * Cos(ecl) - z * Sin(ecl)
 ze = y * Sin(ecl) + z * Cos(ecl)
 '
 ' find the RA and DEC from the rectangular equatorial coords
 '
 Select Case index
 Case 3
 ' RA in degrees
 planet = Application.Atan2(xe, ye) * degs
 If planet < 0 Then planet = 360 + planet
 Case 2
 ' DEC in degrees
 planet = Atn(ze / Sqr(xe * xe + ye * ye)) * degs
 Case 1
 ' Radius vector in au

astrofns - 11

 planet = Sqr(xe * xe + ye * ye + ze * ze)
 End Select
End Function
'
' The subroutine below replaces the values of i,o,p,a,e,L
' with the values for the planet selected by pnum. You could
' always add planet like objects, but watch the value of
' the inclination i. The method used in planet is only
' good for orbits 'near' the ecliptic.
'
' This is an example of the Visual Basic default 'passing by
' reference'
'
Sub element(i As Double, o As Double, p As Double, _
 a As Double, e As Double, l As Double, _
 ByVal d As Double, ByVal pnum As Integer)
 Select Case pnum
 Case 1 'mercury
 i = (7.00487 - 0.000000178797 * d) * rads
 o = (48.33167 - 0.0000033942 * d) * rads
 p = (77.45645 + 0.00000436208 * d) * rads
 a = 0.38709893 + 1.80698E-11 * d
 e = 0.20563069 + 0.000000000691855 * d
 l = range2pi(rads * (252.25084 + 4.092338796 * d))
 Case 2 'venus
 i = (3.39471 - 0.0000000217507 * d) * rads
 o = (76.68069 - 0.0000075815 * d) * rads
 p = (131.53298 - 0.000000827439 * d) * rads
 a = 0.72333199 + 2.51882E-11 * d
 e = 0.00677323 - 0.00000000135195 * d
 l = range2pi(rads * (181.97973 + 1.602130474 * d))
 Case 3 'earth
 i = (0.00005 - 0.000000356985 * d) * rads
 o = (-11.26064 - 0.00013863 * d) * rads
 p = (102.94719 + 0.00000911309 * d) * rads
 a = 1.00000011 - 1.36893E-12 * d
 e = 0.01671022 - 0.00000000104148 * d
 l = range2pi(rads * (100.46435 + 0.985609101 * d))
 Case 4 'mars
 i = (1.85061 - 0.000000193703 * d) * rads
 o = (49.57854 - 0.0000077587 * d) * rads
 p = (336.04084 + 0.00001187 * d) * rads
 a = 1.52366231 - 0.000000001977 * d
 e = 0.09341233 - 0.00000000325859 * d
 l = range2pi(rads * (355.45332 + 0.524033035 * d))
 Case 5 'jupiter
 i = (1.3053 - 0.0000000315613 * d) * rads
 o = (100.55615 + 0.00000925675 * d) * rads
 p = (14.75385 + 0.00000638779 * d) * rads
 a = 5.20336301 + 0.0000000166289 * d
 e = 0.04839266 - 0.00000000352635 * d
 l = range2pi(rads * (34.40438 + 0.083086762 * d))
 Case 6 'saturn
 i = (2.48446 + 0.0000000464674 * d) * rads
 o = (113.71504 - 0.0000121 * d) * rads
 p = (92.43194 - 0.0000148216 * d) * rads
 a = 9.53707032 - 0.0000000825544 * d
 e = 0.0541506 - 0.0000000100649 * d
 l = range2pi(rads * (49.94432 + 0.033470629 * d))
 Case 7 'uranus
 i = (0.76986 - 0.0000000158947 * d) * rads
 o = (74.22988 + 0.0000127873 * d) * rads
 p = (170.96424 + 0.0000099822 * d) * rads
 a = 19.19126393 + 0.0000000416222 * d
 e = 0.04716771 - 0.00000000524298 * d
 l = range2pi(rads * (313.23218 + 0.011731294 * d))
 Case 8 'neptune
 i = (1.76917 - 0.0000000276827 * d) * rads

astrofns - 12

 o = (131.72169 - 0.0000011503 * d) * rads
 p = (44.97135 - 0.00000642201 * d) * rads
 a = 30.06896348 - 0.0000000342768 * d
 e = 0.00858587 + 0.000000000688296 * d
 l = range2pi(rads * (304.88003 + 0.0059810572 * d))
 Case 9 'pluto
 i = (17.14175 + 0.0000000841889 * d) * rads
 o = (110.30347 - 0.0000002839 * d) * rads
 p = (224.06676 - 0.00000100578 * d) * rads
 a = 39.48168677 - 0.0000000210574 * d
 e = 0.24880766 + 0.00000000177002 * d
 l = range2pi(rads * (238.92881 + 3.97557152635181E-03 * d))
 End Select
End Sub

